All living organisms are dependent on water, but this is especially true for plants. Limited access to water is one of the decisive factors for humans to be able to survive in large parts of the earth. The development of plants (crops) with greater tolerance for drought is of great importance for more people to be able to live a decent life.

In a pure basic research project, where the goal was to understand how cells regulate protein expression, scientists in UmeƄ have now taken a giant step forward on the road to developing plants with greater resistance to drought, infections, and high concentrations of salt. By deactivating a gene that codes for a protein that is part of the so-called mediator complex in the plant mouse-ear cress, the researchers have shown that these plants evince a much greater ability to survive drought. At the same time, they have stronger resistance to high salt concentrations and their blooming is delayed, which indirectly leads to increased leaf production.

The research project is a collaboration between scientists at the Department of Medical Biochemistry and Biophysics at UmeƄ University and the Department of Forest Genetics and Plant Physiology and the Department of Microbiology at the Swedish University of Agricultural Sciences (SLU).
Picture of Stefan Bjƶrklund
More information about the research project is available at the
UmeƄ University research database(direct link to the project)

Original article:
The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development Nils Elfving, Céline Davoine, Reyes Benlloch, Jeanette Blomberg, Kristoffer Brännström, Dörte Müller, Anders Nilsson, Mikael Ulfstedt, Hans Ronne, Gunnar Wingsle, Ove Nilsson and Stefan Björklund. Proceedings of the National Academy of Sciences (PNAS) 2011; published ahead of print May 2, 2011.

For more information, please contact Stefan Bjƶrklund at Mobile: +46 (0)70-216 28 90
Phone: +46 (0)90-786 67 88
E-mail: stefan.bjorklund@medchem.umu.se

Stefan Bjƶrklund is professor of medical chemistry at the Department of Medical Chemistry and Biophysics, UmeƄ University.